Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DOUBLEAPP(s, app(s, 0))
APP(app(times, app(s, x)), y) → APP(times, x)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
INCAPP(map, app(plus, app(s, 0)))
DOUBLEAPP(s, 0)
DOUBLEAPP(times, app(s, app(s, 0)))
APP(app(times, app(s, x)), y) → APP(app(plus, app(app(times, x), y)), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
DOUBLEAPP(map, app(times, app(s, app(s, 0))))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
INCAPP(plus, app(s, 0))
APP(app(plus, app(s, x)), y) → APP(plus, x)
INCAPP(s, 0)
APP(app(times, app(s, x)), y) → APP(app(times, x), y)
APP(app(times, app(s, x)), y) → APP(plus, app(app(times, x), y))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

DOUBLEAPP(s, app(s, 0))
APP(app(times, app(s, x)), y) → APP(times, x)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
INCAPP(map, app(plus, app(s, 0)))
DOUBLEAPP(s, 0)
DOUBLEAPP(times, app(s, app(s, 0)))
APP(app(times, app(s, x)), y) → APP(app(plus, app(app(times, x), y)), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
DOUBLEAPP(map, app(times, app(s, app(s, 0))))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
INCAPP(plus, app(s, 0))
APP(app(plus, app(s, x)), y) → APP(plus, x)
INCAPP(s, 0)
APP(app(times, app(s, x)), y) → APP(app(times, x), y)
APP(app(times, app(s, x)), y) → APP(plus, app(app(times, x), y))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DOUBLEAPP(s, app(s, 0))
APP(app(times, app(s, x)), y) → APP(times, x)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
INCAPP(map, app(plus, app(s, 0)))
DOUBLEAPP(times, app(s, app(s, 0)))
DOUBLEAPP(s, 0)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(times, app(s, x)), y) → APP(app(plus, app(app(times, x), y)), y)
DOUBLEAPP(map, app(times, app(s, app(s, 0))))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
INCAPP(plus, app(s, 0))
APP(app(plus, app(s, x)), y) → APP(plus, x)
INCAPP(s, 0)
APP(app(times, app(s, x)), y) → APP(app(times, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(times, app(s, x)), y) → APP(plus, app(app(times, x), y))

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 14 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(x, y)

R is empty.
The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
map(x0, nil)
map(x0, cons(x1, x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
s(x1)  =  s(x1)

Recursive path order with status [2].
Quasi-Precedence:
[PLUS2, s1]

Status:
s1: multiset
PLUS2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(times, app(s, x)), y) → APP(app(times, x), y)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

TIMES(s(x), y) → TIMES(x, y)

R is empty.
The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
map(x0, nil)
map(x0, cons(x1, x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(times, app(s, x)), y) → APP(app(times, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
TIMES(x1, x2)  =  TIMES(x1, x2)
s(x1)  =  s(x1)

Recursive path order with status [2].
Quasi-Precedence:
[TIMES2, s1]

Status:
s1: multiset
TIMES2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x2)
map  =  map
cons  =  cons

Recursive path order with status [2].
Quasi-Precedence:
map > APP1 > [app1, cons]

Status:
APP1: multiset
map: multiset
app1: multiset
cons: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

MAP(f, cons(x, xs)) → MAP(f, xs)

R is empty.
The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
map(x0, nil)
map(x0, cons(x1, x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MAP(x1, x2)  =  MAP(x1, x2)
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
cons1: multiset
MAP2: [2,1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
incapp(map, app(plus, app(s, 0)))
doubleapp(map, app(times, app(s, app(s, 0))))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
inc
double

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.